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. Benchmark calculations for higher-order parabolic equations

Michael D. Collins®

Naval Ocean Rescarch and Development Activity. Stennis Space Conter, Mississippi 39529

(Received 14 October 1988; accepted for publication 6 October 1989)

Benchmark solutions generated with parabolic equation (PE) models are presented for range-
dependent underwater acoustic propagation problems involving both penetrable and perfectly
reflecting ocean bottoms. The solution of the wide-angle PE of Claerbout {J. F. Clacrbout,
Fundamentals of Geophysical Data Processing (McGraw-Hill, New York. 1976), pp. 206-207 |
agrees with the outgoing coupled-mode solution for the problems involving penetrable
bottoms. The solution of the higher-order PE of Bamberger ez al. [ Bamberger ef al., *Higher
Order Paraxial Wave Equation Approximations in Heterogeneous Media,” SIAM J. Appl.
Math. 48, 129-154 (1988) ], which is a generalization of Claerbout’s PE, agrees with the
outgoing coupled-mode solution for problems involving large variations in sound speed and
propagation nearly orthogonal to the preferred direction. The computer code FEPE was used
to generate the benchmark solutions and was found to run several times faster than the IFDPE
computer code due to a tridiagonal system solver in FEPE that is optimized for range-

dependent problems.

PACS numbers: 43.30.Bp

INTRODUCTION

The accuracy of the parabolic equation' (PE) method
in underwater acoustic modeling has been assessed with nu-
merous range-independent benchmark problems.” The
wide-angle PE"® has performed well in most of these tests.
Several range-dependent benchmark problems were recent-
ly posed and preliminary resuits were presented.* Some of
these problems involve perfectly reflecting ocean bottoms
and thus provide an extreme test of the ability of a propaga-
tion model to handle wide-angle propagation.

Since the standard wide-angle PE cannot handle propa-
gation angles much larger than 40 deg, a higher-order PE
model** based on a Padé series has been developed to handle
these problems. The higher-order PE accurately handles
propagation nearly orthogonal to the preferred direction
and produces solutions essentially identical to the outgoing
coupled-mode solution.” The computer code FEPE" is used
to generate the benchmark solutions. An efficient tridia-
gonal system solver (not based on the standard Gaussian
elimination scheme) in FEPE is discussed, and FEPE is
found to run several times faster than the IFDPE’ code for
one of the benchmark problems. Solutions generated with
the coupled normal-mode model COUPLE'" are discussed.

I. THE HIGHER-ORDER PE MODEL

Solutions generated with PE models approximate the
solution of the outgoing wave equation

90 _ T %0, 1
or

a7 p 0z dz)°
We refer to Eq. (1), which can be solved in terms of outgoing

x=k, "(kz—kf, +

d* 1 dp 3) (2)

*' Present address: Naval Research Laboratory, Washington, DC 20375.
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coupled modes, as PE | . The reference sound speed is ¢,
where k, = w/c,, ris the range from a point source, z is the
depth below the ocean surface. & is the complex wavenum-
ber, p is the density, and w is the circular {requency. The PE
field Q(r,z) satisfies homogeneous boundary conditions at
the top and bottom boundaries of the waveguide and the
initial condition

o é
0(02) =27 3 d’/(_z")_l_(z_)
'k
! Vi
where z, is the source depth. The normal modes ¢, and
eigenvalues k, satisfy

, (3

=T kg, =k, (4)

In practice, either the Gaussian PE starter' or Greene's
wide-angle PE starter'' is often used to approximate Q(0,z).
In range-independent environments, the complex pressure P
is related to Q by Q~\/rP for k,r> 1. In range-dependent
environments, d /dr and x do not commute, reflections can
be generated, and a term involving dp/Jdrappears in the wave
equation. Thus Q~/rP in range-dependent environments
only if the range dependence is weak.

Bamberger et al. used a Padé series to approximate the
square root in Eq. (1) and derive the following higher-order
PE:

ou Ta,X

"k Jn v, S
or l 0,2, l+b,x " )
a,, =[2/Q2n + 1)]sin’[jm/(2n + 1)], (6)
b,, = cos’[jm/(2n + 1)], )]

where Q=Q, = U, exp(ik,r). Equation (5), which we re-
fer to as PE,, has been applied to underwater acoustics and
solved with the method of alternating directions.® This ap-
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proach involves n steps with the jth step requiring the solu-
tion of the equation

! .
= lkua,.n

d
(1+4b,,x) xU,. (8)

ar
Since Eq. (8) is of the same form as Claerbout’s equation (or
PE,), for which simple and effective numerical solutions
have been derived,'''" the alternating directions solution is
easy to implement into an existing PE computer code.

The computer code FEPE solves PE, using finite ele-
ments for depth discretization and Crank-Nicolson integra-
tion in range as described in Ref. 6. The tridiagonal system
solver in FEPE has been designed to minimize computation
time. The code uses an elimination scheme that involves
sweeping downward to the row corresponding to the ocean
bottom to eliminate entries below the main diagonal and
sweeping upward to the ocean bottom to eliminate entries
above the main diagonal followed by back substitution
sweeping up and down from the ocean bottom. In contrast,
Gaussian elimination involves sweeping downward to elimi-
nate all entries below the main diagonal followed by back
substitution sweeping upward.

For problems involving range-dependent ocean depth,
the new scheme is more efficient than Gaussian elimination.
In the decomposition into upper and lower triangular matri-
ces of Gaussian elimination, 1t is necessary to repeat sweep-
ing downward from the ocean bottom as the ocean depth
varies. With the new scheme, it is necessary to repeat sweep-
ing only for a few rows near the ocean bottom. Since multi-
plication is faster than division on computers, the tridia-
gonal system solver has also been improved by replacing
divisors with factors. The code FEMODE® determines the
eigenvalues using the finite-element matrices and constructs

Q(0,2).

Il. BENCHMARK PROBLEMS AND RESULTS

Problem 1 consists of three parts each involving a
wedge-shaped ocean in which the sound speed is 1500 m/s,
the ocean depth decreases from 200 m to zero over the first 4
km from the source, and the surface is pressure release. A 25-
Hz source is placed 100 m below the surface. For part A, a
line source is used with a pressure release ocean bottom in
plane geometry. For parts B and C, a point source is used in
cylindrical geometry with sound speed 1700 m/s and density
1.5 g/cm’ in the half-space sediment. The sediment is loss-
less for part B. The sediment attenuation is 0.5dB/A for part
C.

Since cnergy is reflected back toward the source by a
pressure release ocean bottom, PE | cannot provide the full-
wave solution for part A. However, we apply PF to this
problem to show that it accurately handles the outgoing so-
lution, which involves propagation angles up to nearly 90
deg near mode cutoff. PE,, is solved over a sequence of stair
steps that approximate the wedge geometry. For this prob-
lem, it is necessary to remove reflected energy by mollify-
ing'* @ at the beginning of each stair step as follows:

bl
Q(z)aIQ(Z’) S 4,(2)8,(2)dz, 9
;7
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FIG. 1. The wedge with pressure release bottom in plane geometry. Trans-
mission Joss at depth 30 m. The solid curve is the PE; result. The dashed
curve is the PE| resutt, which has targe phase ervors just before the mode
cutoft ranges near 1 km and 2.2 km.

where the sum is over the .V propagating modes at the range
of the stair step.

Transmission loss at z = 30 m generated with PE, and
PE, appears in Fig. 1. The PE, result agrees well with the
PE | result of Ref. 15. The PE, result exhibits the largest
phase errors just before mode cutoff at r = 1 km and 2.2 km
(three modes are excited by the source). Data for this, as
well as the problems that follow, appear in Table I, in which
CPU,, is the run time required by FEPE to solve PE, on a
Digital VAX-8650 computer, Az and Ar are the depth and
range increments, z,, is the maximum depth of the computa-
tional domain, and N, is the number of modes used to com-
pute Q(0,z).

For parts B and C, Greene's wide-angle PE starter is
used, and the attenuation increases artificially in the lower
portion of the sediment to prevent reflections from the artifi-
cial pressure release boundary at z = z,,. Transmission loss
atz = 30 m and 150 m generated with PE, and PE, appears
in Figs. 2 and 3 for parts B and C. The PE, results agree with
the PE, results of Ref. 15 obtained using the IFDPE code,
and the PE, results agree fairly well with the PE _ results of
Ref. 15. This suggests that Greene’s wide-angle PE starter is
accurate for larger angles than PE,. Using the input param-
eters used in Ref. 15, FEPE runs several times faster than
IFDPE for this problem due to the efficient tridiagonal solv-
erin FEPE.

The coupled-mode code COUPLE was also used to
study this problem. Benchmark solutions generated with
this model are not presented here, however, because this is
done in Ref. 15. However, it is perhaps worth mentioning

TABLE 1. Data for the benchmark calculations. Many of the input param-
eters are identical to those used in Ref. 15.

Case N, [ Ar Az Zy (n,CPU,) (n,CPU,)

1A 3 1500m/s Sm Im (3.15s) (1.8%)

iIB - [500m/s Sm Im 4km (2,2min) (1.1 min)

IC -+~ 1500m/s Sm Im 2km (2,2 min) (1,1 min)

2A 10 1700m/s Im |m tkm (2.8 min) (1.4 min)

2B 17 2500m/s Im jm lkm (51}h) (1,15 min)
Michael D. Collins: Benchmark: Higher-order PEs 1536
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FIG. 2. The wedge with lossless sediment in cylindrical geometry. Trans-
mission loss at depth (a) 30 m and (b) 150 m. The solid curve is the PE,
result. The dashed curve is the PE, result.
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FIG. 3. The wedge with lossy sediment in c; Lindrical geomctry. Transmis-

sion loss at depth (a) 30 m and (b) 150 m. The solid curve is the PE, result.
The dashed curve is the PE, result.
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that the run times required to produce data at many receiver
depths (to produce contour plots) with COUPLE were
more than ten times larger than the run times required to
produce data at one receiver depth (to produce a transmis-
sion loss curve). This example illustrates that methods based
on spectral decomposition can be inefficient if the solution is
desired at many points in the domain. Normal-mode models
are usually used for range-independent propagation prob-
lems when relatively few receivers are involved. When the
solution is desired over the entire domain (this is the case for
matched-field signal processing), however, it is possible that
PE models are more efficient.

Problem 2 consists of a parallel waveguide in cylindrical
geometry with a pressure release surface, a rigid bottom, and
the sound speed

c(rz) = (1500 m/s)/\J1 + aE + BE* + vE* + 8E ¢,

(10)
a= — (2mh,/H)cos(wz/H), (11)
B= (mwh,/H)* — (4wh,/H)cos(2nz/H) , (12)
vy = (4m°h hy/H?)cos(mz/H), (13)
6 = (2mh,/H)?, (14)

E =exp( — mr/H), (15)

where h,/H = 0.032 and h,/H = 0.016. Since the range de-
pendence of the sound speed becomes more gradual with
range, we update the sound-speed profile every range step
for r <1 km and every tenth range step for > 1 km. Two
cases were originally posed for this problem. However, we
consider only the 25-Hz case with z, = 250 m and H = 500
m. Following Ref. 15, we divide this problem into part A, for
which the first ten modes are excited, and part B, for which
all 17 modes are excited.

Transmission loss at z = 250 m generated with PE, and
PE, appears in Fig. 4 for part A. The PE, result agrees with
the PE, result of Ref. 15, and the PE, result agrees with the
PE_ result of Ref. 15. Transmission loss at z = 250 m ap-
pears in Fig. § for part B. The PE, result agrees with the PE,
result of Ref. 15, and the PE result agrees well with the PE
result of Ref. 15. A large value was used for ¢, for part B due
to the large phase velocities of the higher modes.
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FIG. 4. The parallel waveguide in cylindrical geometry with range-dcpen-l o8

dent profile and ten modes excited. Transmission loss at depth 250 m. The

solid curve is the PE, result. The dashed curve is the PE, result. r
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FLG. 5. The parallel waveguide in ey lindrical geometry with range-depen-
dent profile and 17 modes excited. Transminsion Toss at depth 250 m. The
sohd curve is the PEL result, The dashed curve is the PE | result

ill. CONCLUSION

The higher-order PE of Bamberger ¢r al. produces re-
sults that agree well with outgoing coupled-mode results,
even for propagation nearly orthogonal to the preferred di-
rection. Greene's wide-angle PE starter appears to be accu-
rate for a larger aperture than Clacrbout’s PE. Due to an
improved algorithm for solving tridiagonal systems, the
FEPE model is several times faster than the IFDPE model,
especially for problems involving sloping bathymetry.
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